Chapter 7,
Class Templates array and

vector; Catching Exceptions
C++ How to Program, 9/e

©1992-2014 by Pearson
Education, Inc. All Rights
Reserved.

In this chapter you'll:

m Use C++ Standard Library class template array—a fixed-size collection of related data
items.

Use arrays to store, sort and search lists and tables of values.

Declare arrays, initialize arrays and refer to the elements of arrays.

Use the range-based for statement.

Pass arrays to functions.

Declare and manipulate multidimensional arrays.

m Use C++ Standard Library class template vector—a variable-size collection of related
data items.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

7.1 Introduction

7.2 arrays

7.3 Declaring arrays

7.4 Examples Using arrays
7.4.1 Declaring an array and Using a Loop to Initialize the array’s Elements
7.4.2 Initializing an array in a Declaration with an Initializer List

7.4.3 Specifying an array’s Size with a Constant Variable and Setting array
Elements with Calculations

7.4.4 Summing the Elements of an array

7.4.5 Using Bar Charts to Display array Data Graphically
7.4.6 Using the Elements of an array as Counters

7.4.7 Using arrays to Summarize Survey Results

7.4.8 Static Local arrays and Automatic Local arrays

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

7.5 Range-Based for Statement

7.6 Case Study: Class GradeBook Using an array to Store Grades

7.7 Sorting and Searching arrays

7.8 Multidimensional arrays

7.9 Case Study: Class GradeBook Using a Two-Dimensional array
7.10 Introduction to C++ Standard Library Class Template vector
7.11 Wrap-Up

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

7.1 Introduction

This chapter introduces the topic of data structures—
collections of related data items.

We discuss arrays which are fixead-size collections
consisting of data items of the sametype, and vectors
which are collections (also of data items of the same type)
that can grow and shrink adynamically at execution time.

Both array and vector are C++ standard library class
templates.

After discussing how arrays are declared, created and
Initialized, we present examples that demonstrate several
common array manipulations.

/.2 arrays

An array is a contiguous group of memory locations that all have the
same type.

To refer to a particular location or element in the array, specify the
name of the array and the position number of the particular element.

Figure 7.1 shows an integer array called c.
12 elements.

The position number is more formally called a subscript or index
(this number specifies the number of elements
from the beginning of the array).

The first element in every array has subscript O (zero) and is sometimes
called the zeroth element.

The highest subscript in array c is 11, which is 1 less than the number
of elements in the array (12).

A subscript must be an integer or integer expression (using any integral
type).

Name of the array is ¢

Position number of the cl
element within the array [
cl

cl

Name of an individual ———= c[
array element cl
cl

cl

cl

cl

c[10

c[11

Value

© 0 N O VbR W N R O -

L B L N S e B R L= I S Ry EU D S R S)

Fig. 7.1 | array of 12 elements.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Common Programming Error 7.1

Note the difference between the “seventh element of the
array’ and “array element 7.” Subscripts begin at 0, so
the “seventh element of the array’ has a subscript of 6,
while “array element 7 has a subscript of 7 and is
actually the eighth element of the array. This distinction
is a frequent source of off-by-one errors. To avoid such
errors, we refer to specific array elements explicitly by
their array name and subscript number (e.g., c[6] or

cl7]).

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

O left to right primary
[See caution in Fig. 2.10 regard-
ing grouping parentheses.]

O [1 ++ -- static_cast<#ype-(operand) left to right postfix

=+ o= o+ = right to left unary (prefix)
/% left to right muldplicative

+ - left to right additive

<< >> left to right insertion/extraction
< <= > >= left to right relational

= I= left to right equality

&& left to right logical AND

|| left to right logical OR

?: right to left conditional

Fig. 7.2 | Precedence and associativity of the operators introduced to this
point.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

= 4= = *= /= %= right to left assighment

, left to right comma

Fig. 7.2 | Precedence and associativity of the operators introduced to this
point.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

/.3 Declaring arrays

arrays occupy space in memory.

To specify the type of the elements and the number of
elements required by an array use a declaration of the form:

e array<itype, arraySize > arrayName,

The notation <type, arraySize> indicates that array is a class
template.

The compiler reserves the appropriate amount of memory
based on the fype of the elements and the arraySize.

arrays can be declared to contain values of most data types.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

7.4 Examples Using arrays

* The following examples demonstrate how to
declare arrays, how to initialize arrays and how
to perform common array manipulations.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Declaring an array and Using a Loop
to Initialize the array’s Elements

The program In Fig. 7.3 declares five-element integer array n
(line 10).
s1ze_t represents an unsigned integral type.

This type is recommended for any variable that represents an
array’s size or an array’s subscripts. Type s1ze_t is
defined in the std namespace and is in header <cstddef>,
which is included by various other headers.

If you attempt to compile a program that uses type s1ze_t
and receive errors indicating that it’s not defined, simply
include <cstddef> in your program.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

OoOo~NOTUnNHh WN=

10
11
12
13
14
15
16
17
18
19
20
21

// Fig. 7.3: fig07_03.cpp

// Initializing an array's elements to zeros and printing the array.
#include <iostream>

#include <iomanip>

#include <array>

using namespace std;

int main()
{

array< int, > n; // nis an array of 5 int values

// initialize elements of array n to O

for (size_t i = 0; i < n.size(); ++i)
n[i] = 0; // set element at location i to 0
cout << << setw() << << endl;

// output each array element's value
for (size_t j = 0; j < n.size(); ++j)
cout << setw() << j << setw() << n[j] << endl;
} // end main

Fig. 7.3 | Initializing an array’s elements to zeros and printing the array.
(Part | of 2.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Element Value

A WNRERO
QOO OO0O

Fig. 7.3 | Initializing an array’s elements to zeros and printing the array.
(Part 2 of 2.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

