
Chapter 7,

Class Templates array and

vector; Catching Exceptions
C++ How to Program, 9/e

©1992-2014 by Pearson
Education, Inc. All Rights

Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

7.1 Introduction
• This chapter introduces the topic of data structures—

collections of related data items.

• We discuss arrays which are fixed-size collections

consisting of data items of the same type, and vectors

which are collections (also of data items of the same type)

that can grow and shrink dynamically at execution time.

• Both array and vector are C++ standard library class

templates.

• After discussing how arrays are declared, created and

initialized, we present examples that demonstrate several

common array manipulations.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

7.2 arrays

• An array is a contiguous group of memory locations that all have the
same type.

• To refer to a particular location or element in the array, specify the
name of the array and the position number of the particular element.

• Figure 7.1 shows an integer array called c.

• 12 elements.

• The position number is more formally called a subscript or index
(this number specifies the number of elements
from the beginning of the array).

• The first element in every array has subscript 0 (zero) and is sometimes
called the zeroth element.

• The highest subscript in array c is 11, which is 1 less than the number
of elements in the array (12).

• A subscript must be an integer or integer expression (using any integral
type).

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

7.3 Declaring arrays

• arrays occupy space in memory.

• To specify the type of the elements and the number of

elements required by an array use a declaration of the form:

• array< type, arraySize > arrayName;

• The notation <type, arraySize> indicates that array is a class

template.

• The compiler reserves the appropriate amount of memory

based on the type of the elements and the arraySize.

• arrays can be declared to contain values of most data types.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

7.4 Examples Using arrays

• The following examples demonstrate how to

declare arrays, how to initialize arrays and how

to perform common array manipulations.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

7.4.1 Declaring an array and Using a Loop

to Initialize the array’s Elements

• The program in Fig. 7.3 declares five-element integer array n

(line 10).

• size_t represents an unsigned integral type.

• This type is recommended for any variable that represents an

array’s size or an array’s subscripts. Type size_t is

defined in the std namespace and is in header <cstddef>,

which is included by various other headers.

• If you attempt to compile a program that uses type size_t

and receive errors indicating that it’s not defined, simply

include <cstddef> in your program.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

